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Chiral carbene approach to gold-catalyzed asymmetric cyclization of 1,6-enynes
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Chiral C2-symmetric N-heterocyclic carbenes (NHCs) were tested for their stereocontrolling abilities in
gold(I)-catalyzed asymmetric cyclization of 1,6-enynes giving the corresponding cyclopentane deriva-
tives with moderate enantioselectivity of up to 59%.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Linear coordination of triple bond–gold–chiral ligand.
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Gold(I) complexes with phosphanes or N-heterocyclic carbenes
(NHCs)1 have emerged as attractive homogeneous catalysts that
activate C–C multiple bonds.2 Several chiral phosphane–Au(I) com-
plexes have been reported to enantioselectively catalyze coupling
of aldehydes with isocyanoacetates,3 cyclization of 1,6-enynes,4

nucleophilic addition to allenes,5 and cyclopropanation of alke-
nes.2b,6 To date, however, there are no reports of a chiral NHC–
Au(I) complex acting as a chiral catalyst.7 The scarcity of enantio-
selective Au(I)-catalyzed transformations is probably due to the
linear coordination geometry of Au(I),8,9 in which a reacting multi-
ple bond coordinates at the side of Au(I) opposite to a chiral ligand;
thus, the reaction site is far away from the chiral environment
(Fig. 1).

We developed a chiral C2-symmetric NHC for asymmetric Cu(I)-
catalyzed conjugate addition of Grignard reagents to 3-substituted
cyclohexenones, where high enantioselectivity and the sense of
asymmetric induction were correlated with the X-ray structures
of NHC–AuCl complexes 1a and 1b (Fig. 2).10–12 The most recent
successful Cu(I)-catalyzed asymmetric arylation of allylic bromides
with aryl-Grignard reagents was also indebted to the copper coun-
terparts of 1c and 1d.13 As part of our continuing studies, we ap-
plied 1a–d to Au(I)-catalyzed asymmetric cyclization of 1,6-
enynes. We describe herein a chiral C2-symmetric NHC–Au(I)-cat-
alyzed asymmetric cyclization of 1,6-enynes to give the corre-
sponding cyclopentane products with moderate ee of up to 59%.4,14

Asymmetric cyclization of enyne 2a4 in methanol was success-
fully catalyzed by 6 mol % each of N-aryl-NHC–AuCl 1a10a and sil-
ver hexafluoroantimonate at room temperature for 1 h to give
3a15 in 94% isolated yield (Table 1, entry 1). The enantioselectivity,
however, was poor; only 5% ee by chiral HPLC (DAICEL ChiralPack
AD, 2-propanol/hexane = 1/19).4a The N-mesitylmethyl version
1b10a gave 3a in 93% yield, but also with poor enantioselectivity
of 4% (entry 2).
ll rights reserved.
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The extremely poor enantioselectivity exhibited by gold com-
plexes 1a and 1b was likely due to the absence of a stereocontrol-
ling group around the Au coordination site. In fact, previously
described X-ray structures10a indicated that the aryl group on the
nitrogen of 1a and 1b was fixed to the direction against the Au–
Cl bond, probably due to a p–p interaction between the phenyl
group on the chiral carbon and the aryl group on the nitrogen. Fur-
thermore, the relatively long bond length between the carbene car-
bon and Au, 1.967 and 1.968 Å as well as 2.286 and 2.268 Å for Au–
Cl of 1a and 1b, respectively, indicated the need for a mechanism to
enable the substituents on the NHC nitrogen to overlay the Au–Cl
bond.

Based on the expectation that one of the two aryl groups of a
diarylmethyl group on the NHC nitrogen should be fixed by the
Au
Cl

MeMe 1d R1 = Me, R2 = H
1e R1 = R2 = Me1b

Figure 2. Chiral NHC–AuCl catalyst precursors 1.

http://dx.doi.org/10.1016/j.tetlet.2009.11.039
mailto:tomioka@pharm.kyoto-u.ac.jp
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


N Au N

CO2MeMeO2C

Au
NHC

2a-Au+-NHC(1e)

CO2MeMeO2C

MeO
(S)-3a

Observed

HMeO2C

MeO2C

H

Figure 3. Perspective view of 1e and stereochemical model for cyclization.

Table 1
Chiral NHC–Au(I) 1-catalyzed cyclization of enyne 2aa

MeO2C

MeO2C

MeOH
rt, time

N N

Ph Ph

R R

AuCl MeO2C

MeO2C

OMe
2a 3a

AgSbF6
1

Entry NHC–AuCl 1 Time (h) Yield (%) ee (%)

1 1a 1 94 5b

2 1b 2.5 93 4b

3 1c 1 95 8
4 1d 1 95 32
5 1e 1 95 56

a The reaction was conducted with 6 mol % each of 1 and silver
hexafluoroantimonate.

b The antipode was obtained.
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p–p interaction and hence a free aryl group overlays the Au–Cl
bond, 1c and 1d13 bearing a diarylmethyl group on nitrogen were
tested. Although the improvement was very slight (8% ee) with 1c
bearing a diphenylmethyl substituent (entry 3), this substituent
became the basis for further improvement. Attaching one methyl
group on the phenyl ring of 1c would bring a methyl group to
the direction of Au–Cl bond realizing more steric control. In fact,
1d with the ortho-methyl group on the phenyl group significantly
improved the enantioselectivity to 32% ee (entry 4). Further intro-
duction of a second methyl group on the 5-position of the phenyl
group was then examined as shown in 1e with expectation of
much more efficient steric bulk.

The new NHC–AuCl complex 1e bearing bis(2,5-dimethyl-
phenyl)methyl substituents was synthesized as an air-stable color-
less amorphous of mp 135–138 �C and ½a�25

D �236 (c 0.96, CHCl3)
starting from (1S,2S)-1,2-diphenylethane-1,2-diamine via bis(2,5-
dimethylphenyl)methylation with the corresponding bromide in
the presence of sodium carbonate in N,N-dimethylpropylene urea
at 120 �C,16 imidazolium salt formation with orthoformate and
ammonium tetrafluoroborate,17 and finally, treatment with so-
dium t-butoxide and a gold chloride–SMe2 complex in THF.10a To
our delight 1e gave the best enantioselectivity of 56% among
examined (entry 5).

The obtained NHC–AuCl 1e could generally be applied to a cat-
alytic asymmetric enyne cyclization of enynes 2b and 2c in meth-
anol at room temperature for 11 h and 1 h to give the
corresponding cyclopentanes 3b with 59% ee and 3c with 52% ee,
respectively, in high chemical yields (Scheme 1).

The sense of the asymmetric induction by 1e–AgSbF6 catalyst is
predictable based on a model structure (Fig. 3). One aryl group of
the bis(2,5-dimethylphenyl)methyl substituent would be fixed by
Ph
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Scheme 1. Enyne cyclization of 2 catalyzed by NHC–Au(I) 1e–AgSbF6.
a p–p interaction with the phenyl group on the chiral carbon.
Looking through the structure of 1e from the chlorine to the Au,
the appearance of the aryl rings on the right-upside and left-down-
side shows the presence of a steric barrier there. The coordination
of the C–C triple bond of 2a to the Au(I) triggers the cyclization by
placing residues in the vacant space as shown to give (S)-3a18 with
the observed absolute configuration.

In summary, we developed a chiral C2-symmetric NHC–Au(I)
catalyst based on the use of an N-bis(2,5-dimethylphenyl)methyl
substituent endowing a chiral environment around Au(I). The
validity of the concept was evidenced by the moderate enantiose-
lectivity and predictable absolute configuration in the first chiral
NHC–Au(I)-catalyzed asymmetric cyclization of 1,6-enynes. The
results described here provide a basis for the design of much more
efficient chiral NHC–Au(I) catalysts.
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